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The selection problem for propagating fronts is considered for a multiple-mode semilinear parabolic
partial differential equation describing front propagation phenomena in a two-space diblock copolymer
melt. Several regimes, defined by the value of a reduced temperature appearing in the equation, display-
ing qualitatively different types of behavior, are identified. It is found that for any value of the reduced
temperature in a certain range there exists a unique selected solution. Outside of this range, however,
for any value of the reduced temperature, there exist multiple physically realizable solutions. The mech-
anism responsible for this behavior is identified, and, based on its very generic nature, it is conjectured
that similar behavior should be exhibited by a large class of systems. An experimental method for ob-

serving the front propagation phenomena is proposed.

PACS number(s): 03.40.Kf, 47.20.Ky, 64.60.Cn, 61.41.+¢

I. INTRODUCTION

Front propagation phenomena have been the focus of
much study since 1937 when Fisher [1] and Kolmogorov,
Petrovskii, and Piskunov (KPP) [2] published work on a
class of semilinear parabolic partial differential equations
which have come to be known collectively as the Fisher
equation. Fisher considered these equations as models
for the propagation of an advantageous gene through a
population. He pointed out that such an equation
possesses stable traveling wave solutions for all values of
the propagation speed greater than or equal to some
minimum value and speculated that, for his application,
the meaningful one of these solutions (i.e., that which can
be observed in an actual system modeled by the equation)
is that with the smallest speed. KPP later proved that
the slowest stable solution is indeed realized from initial
conditions satisfying a certain set of constraints (most im-
portantly that they vanish outside some bounded region)
for a particular subclass of the Fisher equation. Since
1937, the “selection problem” has been studied in the
context of semilinear parabolic as well as more compli-
cated PDE’s. For these equations, there exist multiple
(usually a continuous family) stable propagating front
solutions, while the physical systems they are used to de-
scribe display reproducible behavior corresponding to
only one of these solutions. The problem is to determine
a general method of identifying the so-called selected
solution [3-7].

In this paper, the selection problem is considered for a
multiple-mode semilinear parabolic PDE describing front
propagation in a diblock copolymer (DBCP) melt. This
system is interesting because it does not always possess a
unique selected solution. It is found that in a certain re-
gime there exist multiple physically realizable solutions of
the equation used to model the dynamics of the DBCP
system. The mechanism responsible for the appearance
of multiple realizable solutions is identified, and based on
the very generic nature of this mechanism, we conjecture
that the behavior exhibited by this system is common to a
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large class of physical systems in which an ordered pat-
tern invades a disordered region.

A diblock copolymer is a synthetic molecule composed
of two homopolymer subchains a and b joined covalently
at one end. We designate the monomers composing a
and b as 4 and B, respectively. In general, 4-B contacts
will be energetically less favorable than will 4-A or B-B.
In addition, given even a weak repulsion between unlike
monomers, unlike sequences will be strongly repelled.
Thus a and b subchains tend to segregate as they are
cooled below some microphase separation temperature
Ty\st- However, because of the covalent bond joining a
and b, macrophase separation is not possible, and such a
system, in equilibrium below Ty, Will thus consist of
A-rich and B-rich mesoscale ordered domains.

In the present work, our focus will be on describing
systems in the weak segregation limit. We consider front
propagation processes in which stable phase separated
(ordered) regions invade unstable homogeneous (disor-
dered) regions. Roughly speaking, the fronts we describe
consist of periodic ordered structure whose amplitude in-
creases from zero to some equilibrium value. In the re-
gime we study, the fronts contain many periods of or-
dered structure. For this reason, there exist well defined
front envelopes representing the amplitude of the periodic
structure. These envelopes assume simple forms, and we
thus seek to describe the invasion processes in terms of
them. We consider the invasion of lamellar and triangu-
lar ordered phases and treat the case in which the spatial
dependence of the front envelope is confined to that di-
mension parallel to its velocity and for which we can
speak unambiguously in terms of a front profile envelope
function. Experimentally, such front propagation phe-
nomena could be realized by applying a uniform pertur-
bation (cooling, etc.) to one edge of a thin film sample, for
example. Lamellar and triangular ordered structures are
considered because, in the weak segregation limit, these
are the only ones to appear in equilibrium, as predicted
by mean-field theory [8,9].

This paper is organized as follows. In the following
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section, the DBCP equation is introduced, and an abbre-
viated derivation of the equation of motion to be studied
is given. In Sec. III, the selection problem for this equa-
tion is considered. Experimental investigation is dis-
cussed in Sec. IV. A summary and concluding remarks
are given in Sec. V.

II. DBCP SYSTEM AND EQUATION
OF MOTION

Front propagation in a DBCP system was first studied
by Liu and Goldenfeld [10], and later systematically by
Paquette [9] in a work we will refer to as I. In I, propa-
gation of an ordered pattern into a metastable disordered
region is considered. In the present work, we consider
propagation into an unstable disordered region and find
that here the DBCP system displays a much richer
variety of behavior than that reported in I. The ap-
proach taken here will closely follow that of I, and the
derivation of the equation of motion studied, as well as a
detailed discussion of experimental feasibility and the va-
lidity of the mean-field approximation, can be found
there. We will now briefly sketch the derivation given in
I

The problem undertaken in I is that of constructing
propagating front solutions to the DBCP equation [11],
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T&€[0,1] reflects the degree of asymmetry of the poly-
mer. T=1 corresponds to a symmetric chain. zis a mea-
sure of the quench depth. With z=0, (2.1) represents a
system at the spinodal. In I it is argued that (2.1) yields
time dependent solutions of the form
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Here, the ¢, ,,(T') are O(1) functions of T. ¢, a small pa-
rameter, is introduced for convenience and serves to
parametrize the relationship between ¢ and z. The rela-
tionship between € and z is determined in the process of
constructing solutions. W, is the envelope function
representing the amplitude of the mth mode of ordered
structure. It is in terms of these envelope functions that
the problem will eventually be cast. k, , represents the
mth element of the r(n) nth order reciprocal lattice vec-
tors of the ordered structure defined by the »(1) primitive
vectors k; 1, ..., Ky (1)

We are presently interested in the invasion of ordered
structure into an unstable disordered region in two spa-
tial dimensions. We consider a system prepared in the
disordered ¥=0 state to which a perturbation is applied.
If this perturbation takes the form of, for example, a uni-
form cooling applied to one edge of the system, we expect
that a propagating front will form as the stable ordered
region invades the unstable disordered region. Immedi-

ately after the application of the perturbation, modes of
ordered structure (perhaps many) will be excited. Since
we are considering the weak segregation regime, there
will be a narrow ring of linearly unstable wave vectors.
For simplicity, we assume that only the most unstable of
these (those with magnitude k,) are excited by the per-
turbation. (Discussion of this point is given in I.) Then,
since in a real system, very closely lying wave vectors
cannot be distinguished, we can think of the reciprocal
space as being partitioned into a finite number of direc-
tions. To each of these directions there corresponds one
of the most unstable modes. The equation of motion for
the (a,B)th such mode can then be written as (the reason
for adopting the double subscript is made clear below)
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where D, s;=cos’®, g, and @, g is the angle made by the
(a,B)th primitive wave vector and the propagation veloc-
ity. s=[3(1—T)/4z]'"? represents an effective tempera-
ture. For convenience, we break up reciprocal space into
three regions of equal size (—7/2, —m7/6), (—m/6,7/6),
and (/6,7 /2). Call these regions —1, 0, and 1, respec-
tively. [Since (2.2) is unchanged if we replace k,, , by
—k,, ,, we need only consider this half-space.] The first
index of W, gidentifies the region to which this mode be-
longs. The second index identifies which position this
mode occupies within its region. We choose a convention
such that W_, 5 can be obtained from W, 5 by a rotation
of 7/3, etc. The wave vectors of the triplet of modes
{Wa,p Wy W, g} then form an equilateral triangle. For
such modes, there is a direct second order coupling. This
fact accounts for the second order term in (2.3). The sum
in (2.3) is over all modes, excluding @,B. For later use,
we now define W, ; to be that mode whose wave vector is
parallel to the propagation velocity. Thus ®,,=0,
®_,o=—7/3,and O y=m/3.

As demonstrated in I and [8], depending on s, the equi-
librium of this two-space DBCP system is either a lamel-
lar phase (only one nonzero mode) or a triangular phase
(only the three modes of a single triplet nonzero). Al-
though it is not obvious from (2.3), we have found
through our numerical studies that no ‘additional”
modes appear in any fronts. That is, the only modes ap-
pearing in the steady-state traveling wave solutions are
those that appear in the equilibrium phase. (See I for fur-
ther discussion of this point.) Thus, given s and a set of
initial conditions, there is a competition between modes,
or between triplets, and eventually only one mode or trip-
let survives and evolves toward a steady-state traveling
wave solution.

III. FRONT SELECTION

We have found that there are several distinct regimes,
defined by s, in which qualitatively different front propa-
gation behavior is exhibited. This behavior becomes pro-
gressively more complicated as s increases from 0.
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A. 0=5<0.51

As shown in I, in this regime the equilibrium phase is
the lamellar. Here, the steady-state traveling wave solu-
tion is that of a single mode, and (2.3) reduces to

oW

B =D VW ap+ Wapg—3Wip - 3.1
Then assuming that a particular mode W, , invades the
disordered region, it is well known that there exist stable
traveling wave solutions to (3.1) corresponding to each
speed ¢ =21/ D,,. As proven by Aronson and Wein-
berger, any solution emerging from initial conditions that
vanish outside a localized region propagates asymptoti-
cally at the minimum such speed. Since it is generally
difficult to manipulate the initial conditions outside a
compact set in any experiment (real or numeric), compact
support is recognized as a necessary condition for the
physical realizability of initial conditions. The result of
Aronson and Weinberger has thus been interpreted as
proof that the slowest stable traveling wave solution is
selected for (3.1). In order to determine the selected
speed in the regime in question, we must therefore identi-
fy the selected mode W, . This identification can be
made through the following argument. If W, g in (3.1) is
not the mode whose wave vector is parallel to the propa-
gation speed, W, then the selected solution of this
equation will be unstable with respect to small, localized
perturbations by Wy o. This is due simply to the fact that
the propagation speed of a small disturbance of W, 2,
is greater than 2v'D o,p for all (a,B) distinct from (0,0).
Thus W, is selected, and ¢ =2.

B. 0.51<5<2.6

In this regime (and in fact for all values of s greater
than 0.51, as demonstrated in I), the equilibrium phase is
the triangular, and thus (2.3) reduces to

oW,p
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for each of the three coupled modes W_, g, W, 5, and
W, - Again, we wish to identify the selected value of .
For this equation, there is no rigorous identification of
the asymptotic solution resulting from physically realiz-
able initial conditions. However, based on the hypothesis
that the physically realizable behavior of (3.2) must be
structurally stable, it has been shown that this behavior
corresponds to a so-called ““critical trajectory” in the flow
field of the ordinary differential equation (ODE) obtained
when a traveling wave solution is assumed for (3.2) [7].
As discussed in [7], it is believed that corresponding to
each orientation of the invading ordered structure there
is one such critical trajectory, and this represents the
slowest invasion among the continuous set of stable (here
using the ordinary sense of the word) traveling wave solu-
tions for this orientation. In [7] and [12], the relation be-
tween these apparently independent criteria for physical
realizability —structural stability and compact initial

conditions—is considered, and it is concluded that, at
least for the semilinear parabolic PDE’s considered by
Aronson and Weinberger, the two are equivalent. We be-
lieve that this equivalence holds for a much wider class of
equations. Also in [7] and [12], the reason for this
equivalence is discussed at length. There it is found that
compact initial conditions produce solutions whose
behavior is determined by the front’s bulk. That is, the
observable properties of the front are largely independent
of the behavior of the tip. Because the nature of these
solutions is determined by the bulk, which is stable with
respect to structural perturbations, as opposed to the tip,
which is unstable with respect to structural perturba-
tions, these solutions are structurally stable. All other
solutions are “tip determined,” and therefore structurally
unstable.

For the range of values of s considered here, if SO0,
the invasion described by (3.2) emerging from localized
initial conditions propagates at a speed <2 (as deter-
mined numerically) and is once again unstable with
respect to small, localized perturbations by W;,,. The
corresponding solution is thus not observable. Hence the
selected triplet is given by Wo={W_, o, W0, W, ,}. In-
terestingly, the resulting solution consists of two travel-
ing waves. W, , leads the invasion with speed ¢ =2, and
it is followed by W, _; and W, ; traveling together at a
smaller speed (see Fig. 1). Here, the leading single-mode
invasion corresponds to the critical trajectory of the
ODE for this selected orientation.

The double-front behavior seen here, in which a region
first orders into a lamellar pattern and later, as the slower
trailing fronts pass, orders further into the equilibrium
triangular pattern, is reminiscent of that described by
Bechhoefer, Lowen, and Tuckerman [13] for a single-
mode system. In the present case, however, this
phenomenon is due strictly to the multiple-mode nature
of the invasion and the fact that Dy, >D_, o,D; . As
shown in Fig. 1, the difference between the speeds of the
trailing and leading modes decreases as s increases and
the coupling between modes becomes stronger. Finally,
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FIG. 1. Propagation speeds for the three modes W _, o, Wy o,
and W,,. For 5s<2.6, Wy, leads the invasion, traveling at a
speed ¢ =2, while W_,, and W, trail, traveling together at
some slower speed. For s > 2.6, the three modes travel together
at the same speed (for values of s shown here, this speed is 2).
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we should point out that for any value of s in this regime,
the double-traveling wave behavior cannot continue
indefinitely. In the region which opens up between the
leading and trailing fronts, the lamellar pattern will even-
tually undergo spontaneous ordering (that is, ordering
which is not forced by the trailing fronts) into the tri-
angular pattern. Near s=0.51, the lamellar state is
metastable with respect to such ordering, while for larger
s it is unstable.

C. 2.6=<s5<4.2

Here again, it is found numerically that the asymptotic
solution resulting from initial conditions with compact
support (equivalently, the structurally stable solution)
corresponding to any orientation other than W, travels
at a speed <2. Thus again, the selected solution is the
structurally stable one corresponding to W,. In this re-
gime, the coupling between modes represented by the
second order term in (3.2) is strong enough that, in a
sense, it negates the effect introduced by the relative
difference in magnitude of the diffusion coefficients. Al-
though the W, , mode still leads the invasion, it travels
together with the trailing modes at a speed ¢ =2. Here,
the critical trajectory for the selected orientation corre-
sponds to this three-mode invasion. In this regime, in-
creasing s only causes the trailing modes to further
“crowd” the leading mode. For even larger values of s,
as we will next see, the trailing modes actually “push”
the leading mode, and the front propagates at a speed
c>2.

D. s24.2

Until this point, the fastest structurally stable invasion
has been that corresponding to the triplet W,. The speed
of this invasion has been independent of s and determined
by only the linear order terms in (3.2). The same is not
true, however, for the structurally stable solutions of all
orientations. As an example, we consider the invasion of
the triplet W, ,, obtained from W, by a rotation of 7 /2
radians, ignoring the fact that such an invasion is unsta-
ble with respect to W, ,, and thus not physically realiz-
able in the regimes thus far considered. (We will refer to
the speeds of triplets W, and W, ,, as ¢, and c,,.) In
Fig. 2, the speeds ¢/, and ¢, are plotted as functions of
s. We can see that near s =2.5, ¢, begins to acquire an
s dependence and is no longer determined solely by the
linear order terms in the equation of motion for W, ,.
Also note that near s =4.2, ¢, ,, becomes greater than c.
Below this value of s, ¢/, represents the slowest propa-
gation speed, while ¢, represents the fastest. Above
s=4.2, c,, represents the fastest propagation speed,
while ¢, represents the slowest. We can associate an
orientation with the Bth triplet by defining ®g to be the
smallest element of the set {|®_, gl,|® 4l,|®, gl}. Prop-
agation speed as a function of @y is plotted in Fig. 3 for
values of s both above and below 4.2.

The most important point here is not that ¢, becomes
the slowest speed above s =4.2, but that the speed of the
steady-state solution to (2.3) for any triplet Wﬁ becomes
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FIG. 2. Propagation speeds ¢, and c,,, for the triplets W,
and W,,,. Near s=2.5, c,,, begins to acquire an s dependence
and is no longer determined solely by the linear order terms in
the equation of motion for W,,,. Near s=4.2, c,,, becomes
greater than ¢, (and greater than the speed of W;,,2). At a
slightly larger value of s, ¢, acquires an s dependence.

greater than that of small amplitude, localized distur-
bances of W, ,. Due to this fact, each orientation is now
stable with respect to Wj,. In fact, each orientation is
now stable with respect to all small, localized perturba-
tions. The mechanism responsible for selecting W, has
thus been lost, and there is now no unique selected solu-
tion. In this regime, to each orientation of ordered struc-
ture, there corresponds a physically observable solution
representing the invasion of a triangular pattern.

Because small fluctuations are no longer effective in
selecting an orientation, the outcome of a given experi-
ment is determined by the initial conditions alone. Clear-
ly, these can be chosen so that the propagating front solu-
tion corresponding to any desired orientation is realized.
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FIG. 3. Dependence of propagation speed on orientation of
invading ordered structure for s=3 and 5. For each orienta-
tion, ©g represents the smallest element of the set
{10_14l,100pl,1®, gl}. ®=0 corresponds to the triplet W,.
®p=1/6(~0.52) corresponds to the triplet W,,. For values
of s below 4.2, ¢, is the fastest propagation speed and ¢/, is the
slowest. For values above 4.2, the opposite is true.
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We have numerically studied the competition and selec-
tion that take place in this regime. Unfortunately, the
structure of the domains of attraction in the space of ini-
tial conditions is not easily characterized. We thus were
able to carry out only a rough and incomplete charting of
this space. We found that for values of s between 4.1 and
4.9, the domains of attraction for all orientations are of
approximately equal size. In general, as s increases, the
domains of attraction corresponding to orientations near
W.,, grow, while those corresponding to orientations
near W, shrink.

We should note here that in a system of large spatial
extent, there will be many local regions in which competi-
tion between orientations takes place. From each such
local region, a particular orientation will emerge. Subse-
quently, each of these locally selected orientations will
evolve toward fully developed fronts and as such will
compete with each other. The whole problem of selec-
tion is obviously quite complicated. It is thus exceedingly
difficult to make quantitative statements about the out-
come of this competition.

IV. EXPERIMENTAL INVESTIGATION

There are two properties characteristic of polymer sys-
tems that are commonly cited as simplifying their study
and making them attractive to both theorists and experi-
mentalists. Although the connectedness of the polymer
chains leads to rather complicated microscopic dynamics,
at the level of mesoscopic phenomenology, this very con-
nectedness simplifies the theory of phase separation dy-
namics. Extending the Ginzburg criterion [14] argument
used by de Gennes [15] and Joanny [16] to demonstrate
the validity of mean-field theory for critical phenomena
of polymer systems, Binder [17] demonstrated the same
for phase separation dynamics. He showed that the
width of the temperature range over which such systems
display non-mean-field behavior vanishes as N ~!/2, (This
result is the same in the static case.) Thus the equation of
motion we employ, derived using a mean-field approxi-
mation, can be used to model polymer systems even very
close to the critical temperature. In I a particular physi-
cal system, subject to a critical quench, was considered,
and it was found that our perturbative calculational
method is valid well into the mean-field regime.

The second property of polymer systems alluded to
above is relevant to the experimental investigation of
their dynamics. In general, due to large viscosities, the
dynamics of polymer systems proceed very slowly, and as
a result, even the early stages of the phase separation pro-
cess can be studied [18,19]. This is generally not the case
with “ordinary” small molecule systems. This property
is important for the present work because it allows a
means by which the phenomenological parameters ap-
pearing in our model equation can be identified.

We now propose an experimental setup that should al-
low for the observation and measurement of front propa-
gation phenomena. Suppose that we have an experimen-
tal system composed of two temperature regions separat-
ed by a moving boundary such that on one side of the
boundary the homogeneous phase is stable, while on the

opposite side an ordered phase is stable. Then imagine
the situation in which a disordered-ordered front propa-
gates behind this temperature boundary. If the speed of
the boundary is greater than that of the front, a disor-
dered region will open up between the two in which
patches undergoing spontaneous phase separation will
arise. These patches will eventually destroy the propa-
gating front.

If we have a boundary moving and behind it a front
propagating at the same speed &, we can conclude that
the natural speed of the front is at least as large as §. If
we now begin to increase the speed of the boundary, and
if we can find the speed & at which the boundary first be-
gins to ‘“‘outrun” the ordered structure propagating
behind it, this should be the natural speed of the front
[20]. The goal is to determine &,

Now, consider a front consisting of a particular or-
dered structure and a boundary moving together at the
front’s natural speed c. In the tip of the front, near the
boundary, we can imagine spontaneous fluctuations ap-
pearing in which modes of all types (including those not
present in the front) become excited. If these small dis-
turbances propagate at speeds smaller than c, they will be
overwhelmed by the oncoming front and eventually de-
stroyed. If, however, some of these disturbance are able
to propagate at speeds larger than c, the front will not be
able to destroy them in this way. If the speed of the
boundary were to remain equal to that of the original
front, these disturbances would be held back by the
boundary. If the boundary’s speed were increased by a
sufficiently small amount, however, they would be able to
keep up. Thus if we are performing an experiment and
trying to measure &, the value we find must be at least as
large as the speed of the fastest ‘“‘small disturbances,” i.e.,
the fastest linear mode that can be excited by localized
fluctuations. Any fully developed front that is slower
than this speed is not observable. If we produced such a
front initially, it would eventually be destroyed by the
fluctuations in its tip. All fronts that propagate at speeds
at least as fast as any such fluctuations and that can be
produced by localized initial conditions should be realiz-
able with this type of experimental procedure.

Clearly in the case of an unstable disordered region,
such a temperature boundary must be used in order to
observe front propagation phenomena over an extended
region. In the metastable case, however, this may not be
necessary. As discussed previously, since polymer sys-
tems behave in close accordance with mean-field theory
even when quenched very close to the spinodal, nu-
cleation rates will be quite small, and we may not need to
be concerned with the appearance of ordering patches
ahead of the front.

V. CONCLUSION

In this paper, we have considered front propagation
phenomena in a two-space diblock copolymer melt in
which a stable ordered phase invades an unstable disor-
dered phase. We have studied the multiple-mode semilin-
ear parabolic PDE that can be derived from the DBCP
equation, as demonstrated in I. It was found that, de-
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pending on the value of a sort of reduced temperature ap-
pearing in this equation, the invading phase can possess
either a lamellar or triangular structure. In the former
case, the selected (i.e., physically realizable) wave vector
of the invading ordered structure is parallel to the propa-
gation velocity. In the latter case, there is a range of
values of the reduced temperature for which there exists
a unique selected orientation. Here, the wave vector of
the leading mode of the selected invasion is parallel to the
propagation velocity. For any value of the reduced tem-
perature above this range, there is no unique selected
solution. In this case, there exist realizable invasions cor-
responding to all orientations of ordered structure.

The behavior observed for the DBCP system should be
quite general for systems in which an ordered pattern
with an orientational degree of freedom (i.e., an ordered
pattern in > 1 dimensions) propagates into a disordered
region. If the fastest speed present is that corresponding
to small disturbances of a particular mode of ordered
structure, the fluctuations in the leading edge of the front
will allow the linear order terms to select their “favorite”
orientation. When the speeds of the fully developed
fronts are larger than that of these small disturbances,
the fluctuations can no longer force such a selection, and
assuming the nonlinear terms favor no orientation, there
will be no unique selected solution.

Although it may be possible to construct a system for
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which this plausibility argument does not hold, for those
systems, such as the DBCP, in which couplings between
orientations lead to only stabilizing terms in the equa-
tions of motion, the argument clearly holds. Simply stat-
ed, in such cases, if a fluctuation cannot grow in the lead-
ing edge, where the front has effectively zero amplitude,
it also cannot grow in a region of finite amplitude. Thus
for such systems, if there is a unique selected solution, it
is singled out from the other structurally stable solutions
by a mechanism whose origin lies in the linear order
terms. If the linear terms are able to produce no such
mechanism, there will be no unique selected solution.

Finally, we wish to emphasize that the DBCP melt
should provide an ideal system with which to observe
front propagation phenomena. We hope that by using
the experimental setup described above, the predictions
made here can be successfully tested.
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